MuLK, a eukaryotic multi-substrate lipid kinase.

نویسندگان

  • David W Waggoner
  • Laura Beth Johnson
  • Philip C Mann
  • Valerie Morris
  • John Guastella
  • Sandra M Bajjalieh
چکیده

We report the identification and characterization of a novel lipid kinase that phosphorylates multiple substrates. This enzyme, which we term MuLK for multi-substrate lipid kinase, does not belong to a previously described lipid kinase family. MuLK has orthologs in many organisms and is broadly expressed in human tissues. Although predicted to be a soluble protein, MuLK co-fractionates with membranes and localizes to an internal membrane compartment. Recombinant MuLK phosphorylates diacylglycerol, ceramide, and 1-acylglycerol but not sphingosine. Although its affinity for diacylglycerol and ceramide are similar, MuLK exhibits a higher V(max) toward diacylglycerol in vitro, consistent with it acting primarily as a diacylglycerol kinase. MuLK activity was inhibited by sphingosine and enhanced by cardiolipin. It was stimulated by calcium when magnesium concentrations were low and inhibited by calcium when magnesium concentrations were high. The effects of charged lipids and cations on MuLK activity in vitro suggest that its activity in vivo is tightly regulated by cellular conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The activation loop of PIP5K functions as a membrane sensor essential for lipid substrate processing

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K), a representative member of the phosphatidylinositol phosphate kinase (PIPK) family, is a major enzyme that biosynthesizes the signaling molecule PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) in eukaryotic cells. The stringent specificity toward lipid substrates and the high sensitivity to the membrane environment strongly suggest a membrane...

متن کامل

Characterization of a PDK1 Homologue from the Moss Physcomitrella patens

The serine/threonine protein kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a highly conserved eukaryotic kinase that is a central regulator of many AGC kinase subfamily members. Through its regulation of AGC kinases, PDK1 controls many basic cellular processes, from translation to cell survival. While many of these PDK1-regulated processes are conserved across kingdoms, it is n...

متن کامل

Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK

Regulated phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) by the endoplasmic reticulum (ER) stress-activated protein kinase PERK modulates protein synthesis and couples the production of ER client proteins with the organelle's capacity to fold and process them. PERK activation by ER stress is known to involve transautophosphorylation, which decorat...

متن کامل

Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study

MOTIVATION The folding of many proteins in vivo and in vitro is assisted by molecular chaperones. A well-characterized molecular chaperone system is the chaperonin GroEL/GroES from Escherichia coli which has a homolog found in the eukaryotic cytosol called CCT. All chaperonins have a ring structure with a cavity in which the substrate protein folds. An interesting difference between prokaryotic...

متن کامل

The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain.

Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 37  شماره 

صفحات  -

تاریخ انتشار 2004